Capture-to-fission Ratio

The probability that a neutron that is absorbed in a fissile nuclide causes a
fission is very important parameter of each fissile isotope. In terms of cross-sections, this probability is defined as:

σf / (σf + σγ) = 1 / (1 + σγf) = 1 / (1 + α),

where α = σγf is referred to as the capture-to-fission ratio. The capture-to-fission ratio may be used as an indicator of “quality” of fissile isotopes. The lower C/F ratio simply means that an absorption reaction will result in the fission rather than in the radiative capture. The ratio depends strongly on the incident neutron energy. In the fast neutron region, C/F ratio decreases. It is determined by the steeper decrease in radiative capture cross-section (see chart).

For 235U and 233U the thermal neutron capture-to-fission ratios are typically lower than those for fast neutrons (for mean energy of about 100 keV). It must be noted, the neutron flux of most fast reactors tends to peak around 200 keV, but the mean energy is between 100-200 keV depending on certain reactor design.

Further increase in neutron energy causes conversely a decrease in C/F ratio. This is not the case of 239Pu, for 100 keV neutrons, the C/F ratio is lower than for thermal neutrons. For the fissile isotopes (233U, 235U and 239Pu), a small capture-to-fission ratio is an advantage, because neutrons captured onto them are lost.

capture-to-fission ratio
Source: JANIS (Java-based Nuclear Data Information Software); The JEFF-3.1.1 Nuclear Data Library
capture-to-fission ratio
Table of C/F ratios for thermal and fast neutrons.

Source: JANIS (Java-based Nuclear Data Information Software); The JEFF-3.1.1 Nuclear Data Library

See previous:

See above: