Krypton – Specific Heat, Latent Heat of Fusion, Latent Heat of Vaporization

Krypton – Specific Heat, Latent Heat of Fusion, Latent Heat of Vaporization

Specific heat of Krypton is 0.248 J/g K.

Latent Heat of Fusion of Krypton is 1.638 kJ/mol.

Latent Heat of Vaporization of Krypton is 9.029 kJ/mol.

Specific Heat

Specific heat, or specific heat capacity, is a property related to internal energy that is very important in thermodynamics. The intensive properties cv and cp are defined for pure, simple compressible substances as partial derivatives of the internal energy u(T, v) and enthalpy h(T, p), respectively:

Specific Heat at Constant Volume and Constant Pressure

Table of specific heat capacitieswhere the subscripts v and p denote the variables held fixed during differentiation. The properties cv and cp are referred to as specific heats(or heat capacities) because under certain special conditions they relate the temperature change of a system to the amount of energy added by heat transfer. Their SI units are J/kg K or J/mol K.

Different substances are affected to different magnitudes by the addition of heat. When a given amount of heat is added to different substances, their temperatures increase by different amounts.

Heat capacity is an extensive property of matter, meaning it is proportional to the size of the system. Heat capacity C has the unit of energy per degree or energy per kelvin. When expressing the same phenomenon as an intensive property, the heat capacity is divided by the amount of substance, mass, or volume, thus the quantity is independent of the size or extent of the sample.

specific heat - heat capacity

 

Latent Heat of Vaporization

Phase changes - enthalpy of vaporization

In general, when a material changes phase from solid to liquid, or from liquid to gas a certain amount of energy is involved in this change of phase. In case of liquid to gas phase change, this amount of energy is known as the enthalpy of vaporization, (symbol ∆Hvap; unit: J) also known as the (latent) heat of vaporization or heat of evaporation. As an example, see the figure, which descibes phase transitions of water.

Latent heat is the amount of heat added to or removed from a substance to produce a change in phase. This energy breaks down the intermolecular attractive forces, and also must provide the energy necessary to expand the gas (the pΔV work). When latent heat is added, no temperature change occurs. The enthalpy of vaporization is a function of the pressure at which that transformation takes place.

Latent Heat of Fusion

In case of solid to liquid phase change, the change in enthalpy required to change its state is known as the enthalpy of fusion, (symbol ∆Hfus; unit: J) also known as the (latent) heat of fusion. Latent heat is the amount of heat added to or removed from a substance to produce a change in phase. This energy breaks down the intermolecular attractive forces, and also must provide the energy necessary to expand the system (the pΔV work).

The liquid phase has a higher internal energy than the solid phase. This means energy must be supplied to a solid in order to melt it and energy is released from a liquid when it freezes, because the molecules in the liquid experience weaker intermolecular forces and so have a higher potential energy (a kind of bond-dissociation energy for intermolecular forces).

The temperature at which the phase transition occurs is the melting point.

When latent heat is added, no temperature change occurs. The enthalpy of fusion is a function of the pressure at which that transformation takes place. By convention, the pressure is assumed to be 1 atm (101.325 kPa) unless otherwise specified.

heat of fusion and vaporization

Krypton – Properties

ElementKrypton
Atomic Number36
SymbolKr
Element CategoryNoble Gas
Phase at STPGas
Atomic Mass [amu]83.798
Density at STP [g/cm3]3.75
Electron Configuration[Ar] 3d10 4s2 4p6
Possible Oxidation States0
Electron Affinity [kJ/mol]
Electronegativity [Pauling scale]3
1st Ionization Energy [eV]13.9996
Year of Discovery1898
DiscovererRamsay, Sir William & Travers, Morris
Thermal properties
Melting Point [Celsius scale]-157.36
Boiling Point [Celsius scale]-153.22
Thermal Conductivity [W/m K]0.00949
Specific Heat [J/g K]0.248
Heat of Fusion [kJ/mol]1.638
Heat of Vaporization [kJ/mol]9.029

 

Krypton in Periodic Table

Hydro­gen1HHe­lium2He
Lith­ium3LiBeryl­lium4BeBoron5BCarbon6CNitro­gen7NOxy­gen8OFluor­ine9FNeon10Ne
So­dium11NaMagne­sium12MgAlumin­ium13AlSili­con14SiPhos­phorus15PSulfur16SChlor­ine17ClArgon18Ar
Potas­sium19KCal­cium20CaScan­dium21ScTita­nium22TiVana­dium23VChrom­ium24CrManga­nese25MnIron26FeCobalt27CoNickel28NiCopper29CuZinc30ZnGallium31GaGerma­nium32GeArsenic33AsSele­nium34SeBromine35BrKryp­ton36Kr
Rubid­ium37RbStront­ium38SrYttrium39YZirco­nium40ZrNio­bium41NbMolyb­denum42MoTech­netium43TcRuthe­nium44RuRho­dium45RhPallad­ium46PdSilver47AgCad­mium48CdIndium49InTin50SnAnti­mony51SbTellur­ium52TeIodine53IXenon54Xe
Cae­sium55CsBa­rium56BaLan­thanum57La1 asteriskHaf­nium72HfTanta­lum73TaTung­sten74WRhe­nium75ReOs­mium76OsIridium77IrPlat­inum78PtGold79AuMer­cury80HgThallium81TlLead82PbBis­muth83BiPolo­nium84PoAsta­tine85AtRadon86Rn
Fran­cium87FrRa­dium88RaActin­ium89Ac1 asteriskRuther­fordium104RfDub­nium105DbSea­borgium106SgBohr­ium107BhHas­sium108HsMeit­nerium109MtDarm­stadtium110DsRoent­genium111RgCoper­nicium112CnNihon­ium113NhFlerov­ium114FlMoscov­ium115McLiver­morium116LvTenness­ine117TsOga­nesson118Og
1 asteriskCerium58CePraseo­dymium59PrNeo­dymium60NdProme­thium61PmSama­rium62SmEurop­ium63EuGadolin­ium64GdTer­bium65TbDyspro­sium66DyHol­mium67HoErbium68ErThulium69TmYtter­bium70YbLute­tium71Lu
1 asteriskThor­ium90ThProtac­tinium91PaUra­nium92UNeptu­nium93NpPluto­nium94PuAmeri­cium95AmCurium96CmBerkel­ium97BkCalifor­nium98CfEinstei­nium99EsFer­mium100FmMende­levium101MdNobel­ium102NoLawren­cium103Lr