Stratified Flow – Two-phase Flow

Stratified Flow

In two-phase fluid flow the gravitational force plays very important role, because the fluid with lower density (e.g. gas) is always above the fluid with higher density. Stratified flows are very common in the nature, for example in the ocean and in the atmosphere. In the internal flows the stratified flow occurs at low liquid and gas velocities. As the velocity of the gas increases, the horizontal interface becomes more disturbed and waves may be formed. This flow regime is usual known as the stratified-wavy flow.

bubble, plug, slug, annular, mist, stratified or wavy flow
Sketches of flow regimes for two-phase flow in a horizontal pipe. Source: Weisman, J. Two-phase flow patterns. Chapter 15 in Handbook of Fluids in Motion, Cheremisinoff N.P., Gupta R. 1983, Ann Arbor Science Publishers.
flow patterns - horizontal flow
A flow regime map for the flow of an air/water mixture in a horizontal, 2.5cm diameter pipe at 25◦C and 1bar. Solid lines and points are experimental observations of the transition conditions while the hatched zones represent theoretical predictions. Source: Mandhane, J.M., Gregory, G.A. and Aziz, K.A. (1974). A flow pattern map for gas-liquid flow in horizontal pipes. Int. J. Multiphase Flow
 
References:
Reactor Physics and Thermal Hydraulics:
  1. J. R. Lamarsh, Introduction to Nuclear Reactor Theory, 2nd ed., Addison-Wesley, Reading, MA (1983).
  2. J. R. Lamarsh, A. J. Baratta, Introduction to Nuclear Engineering, 3d ed., Prentice-Hall, 2001, ISBN: 0-201-82498-1.
  3. W. M. Stacey, Nuclear Reactor Physics, John Wiley & Sons, 2001, ISBN: 0- 471-39127-1.
  4. Glasstone, Sesonske. Nuclear Reactor Engineering: Reactor Systems Engineering, Springer; 4th edition, 1994, ISBN: 978-0412985317
  5. Todreas Neil E., Kazimi Mujid S. Nuclear Systems Volume I: Thermal Hydraulic Fundamentals, Second Edition. CRC Press; 2 edition, 2012, ISBN: 978-0415802871
  6. Zohuri B., McDaniel P. Thermodynamics in Nuclear Power Plant Systems. Springer; 2015, ISBN: 978-3-319-13419-2
  7. Moran Michal J., Shapiro Howard N. Fundamentals of Engineering Thermodynamics, Fifth Edition, John Wiley & Sons, 2006, ISBN: 978-0-470-03037-0
  8. Kleinstreuer C. Modern Fluid Dynamics. Springer, 2010, ISBN 978-1-4020-8670-0.
  9. U.S. Department of Energy, THERMODYNAMICS, HEAT TRANSFER, AND FLUID FLOW. DOE Fundamentals Handbook, Volume 1, 2 and 3. June 1992.
  10. White Frank M., Fluid Mechanics, McGraw-Hill Education, 7th edition, February, 2010, ISBN: 978-0077422417

See above:

Two-phase Flow