Electronegativity – Pauling Scale

Electronegativity

Electronegativity, symbol χ, is a chemical property that describes the tendency of an atom to attract electrons towards this atom. For this purposes, a dimensionless quantity the Pauling scale, symbol χ, is the most commonly used.

The electronegativity of fluorine is:

χ = 4.0

In general, an atom’s electronegativity is affected by both its atomic number and the distance at which its valence electrons reside from the charged nucleus. The higher the associated electronegativity number, the more an element or compound attracts electrons towards it.

The most electronegative atom, fluorine, is assigned a value of 4.0, and values range down to cesium and francium which are the least electronegative at 0.7.

electron affinity and electronegativity

Periodic Table

Hydro­gen1HHe­lium2He
Lith­ium3LiBeryl­lium4BeBoron5BCarbon6CNitro­gen7NOxy­gen8OFluor­ine9FNeon10Ne
So­dium11NaMagne­sium12MgAlumin­ium13AlSili­con14SiPhos­phorus15PSulfur16SChlor­ine17ClArgon18Ar
Potas­sium19KCal­cium20CaScan­dium21ScTita­nium22TiVana­dium23VChrom­ium24CrManga­nese25MnIron26FeCobalt27CoNickel28NiCopper29CuZinc30ZnGallium31GaGerma­nium32GeArsenic33AsSele­nium34SeBromine35BrKryp­ton36Kr
Rubid­ium37RbStront­ium38SrYttrium39YZirco­nium40ZrNio­bium41NbMolyb­denum42MoTech­netium43TcRuthe­nium44RuRho­dium45RhPallad­ium46PdSilver47AgCad­mium48CdIndium49InTin50SnAnti­mony51SbTellur­ium52TeIodine53IXenon54Xe
Cae­sium55CsBa­rium56BaLan­thanum57La1 asteriskHaf­nium72HfTanta­lum73TaTung­sten74WRhe­nium75ReOs­mium76OsIridium77IrPlat­inum78PtGold79AuMer­cury80HgThallium81TlLead82PbBis­muth83BiPolo­nium84PoAsta­tine85AtRadon86Rn
Fran­cium87FrRa­dium88RaActin­ium89Ac1 asteriskRuther­fordium104RfDub­nium105DbSea­borgium106SgBohr­ium107BhHas­sium108HsMeit­nerium109MtDarm­stadtium110DsRoent­genium111RgCoper­nicium112CnNihon­ium113NhFlerov­ium114FlMoscov­ium115McLiver­morium116LvTenness­ine117TsOga­nesson118Og
1 asteriskCerium58CePraseo­dymium59PrNeo­dymium60NdProme­thium61PmSama­rium62SmEurop­ium63EuGadolin­ium64GdTer­bium65TbDyspro­sium66DyHol­mium67HoErbium68ErThulium69TmYtter­bium70YbLute­tium71Lu
1 asteriskThor­ium90ThProtac­tinium91PaUra­nium92UNeptu­nium93NpPluto­nium94PuAmeri­cium95AmCurium96CmBerkel­ium97BkCalifor­nium98CfEinstei­nium99EsFer­mium100FmMende­levium101MdNobel­ium102NoLawren­cium103Lr


References:
Nuclear and Reactor Physics:
  1. J. R. Lamarsh, Introduction to Nuclear Reactor Theory, 2nd ed., Addison-Wesley, Reading, MA (1983).
  2. J. R. Lamarsh, A. J. Baratta, Introduction to Nuclear Engineering, 3d ed., Prentice-Hall, 2001, ISBN: 0-201-82498-1.
  3. W. M. Stacey, Nuclear Reactor Physics, John Wiley & Sons, 2001, ISBN: 0- 471-39127-1.
  4. Glasstone, Sesonske. Nuclear Reactor Engineering: Reactor Systems Engineering, Springer; 4th edition, 1994, ISBN: 978-0412985317
  5. W.S.C. Williams. Nuclear and Particle Physics. Clarendon Press; 1 edition, 1991, ISBN: 978-0198520467
  6. G.R.Keepin. Physics of Nuclear Kinetics. Addison-Wesley Pub. Co; 1st edition, 1965
  7. Robert Reed Burn, Introduction to Nuclear Reactor Operation, 1988.
  8. U.S. Department of Energy, Nuclear Physics and Reactor Theory. DOE Fundamentals Handbook, Volume 1 and 2. January 1993.
  9. Paul Reuss, Neutron Physics. EDP Sciences, 2008. ISBN: 978-2759800414.

Advanced Reactor Physics:

  1. K. O. Ott, W. A. Bezella, Introductory Nuclear Reactor Statics, American Nuclear Society, Revised edition (1989), 1989, ISBN: 0-894-48033-2.
  2. K. O. Ott, R. J. Neuhold, Introductory Nuclear Reactor Dynamics, American Nuclear Society, 1985, ISBN: 0-894-48029-4.
  3. D. L. Hetrick, Dynamics of Nuclear Reactors, American Nuclear Society, 1993, ISBN: 0-894-48453-2. 
  4. E. E. Lewis, W. F. Miller, Computational Methods of Neutron Transport, American Nuclear Society, 1993, ISBN: 0-894-48452-4.

See above:

Chemical Properties