Power Defect – Criticality of Power Reactor

Criticality of a Power Reactor – Power Defect

For power reactors at power conditions the reactor can behave differently as a result of the presence of reactivity feedbacks. Power reactors are initially started up from hot standby mode (subcritical state at 0% of rated power) to power operation mode (100% of rated power) by withdrawing control rods and by boron dilution from the primary coolant. During the reactor startup and up to about 1% of rated power, the reactor kinetics is exponential as in zero power reactor. This is due to the fact all temperature reactivity effects are minimal.

On the other hand, during further power increase from about 1% up to 100% of rated power, the temperature reactivity effects play very important role. As the neutron population increases, the fuel and the moderator increase its temperature, which results in decrease in reactivity of the reactor (almost all reactors are designed to have the temperature coefficients negative).

See also: Operational factors that affect the multiplication in PWRs

The negative reactivity coefficient acts against the initial positive reactivity insertion and this positive reactivity is offset by negative reactivity from temperature feedbacks. In order to keep the power to be increasing, positive reactivity must be continuously inserted (via control rods or chemical shim). After each reactivity insertion, the reactor power stabilize itself on the power level proportionately to the reactivity inserted. The total amount of feedback reactivity that must be offset by control rod withdrawal or boron dilution during the power increase is known as the power defect. The power defects for PWRs, graphite-moderated reactors, and sodium-cooled fast reactors are:

  • about 2500pcm for PWRs,
  • about 800pcm for graphite-moderated reactors
  • about 500pcm for sodium-cooled fast reactors

The power defects slightly depend on the fuel burnup, because they are determined by the power coefficient which depends on the fuel burnup. The power coefficient combines the Doppler, moderator temperature, and void coefficients. It is expressed as a change in reactivity per change in percent power, Δρ/Δ% power. The value of the power coefficient is always negative in core life but is more negative at the end of the cycle primarily due to the decrease in the moderator temperature coefficient.

It is logical, as power defects act against power increase, they act also against power decrease. When reactor power is decreased quickly, as in the case of reactor trip, power defect causes a positive reactivity insertion, and the initial rod insertion must be sufficient to make the reactor safe subcritical. It is obvious, if the power defect for PWRs is about 2500pcm (about 6 βeff), the control rods must weigh more than 2500pcm to achieve the subcritical condition. To ensure the safe subcritical condition, the control rods must weigh more than 2500pcm plus value of SDM (SHUTDOWN MARGIN). The total weigh of control rods is design specific, but, for example, it may reach about 6000pcm. To ensure that the control rods can safe shut down the reactor, they must be maintained above a minimum rod height (rods insertion limits) specified in the technical specifications.

Nuclear and Reactor Physics:
  1. J. R. Lamarsh, Introduction to Nuclear Reactor Theory, 2nd ed., Addison-Wesley, Reading, MA (1983).
  2. J. R. Lamarsh, A. J. Baratta, Introduction to Nuclear Engineering, 3d ed., Prentice-Hall, 2001, ISBN: 0-201-82498-1.
  3. W. M. Stacey, Nuclear Reactor Physics, John Wiley & Sons, 2001, ISBN: 0- 471-39127-1.
  4. Glasstone, Sesonske. Nuclear Reactor Engineering: Reactor Systems Engineering, Springer; 4th edition, 1994, ISBN: 978-0412985317
  5. W.S.C. Williams. Nuclear and Particle Physics. Clarendon Press; 1 edition, 1991, ISBN: 978-0198520467
  6. G.R.Keepin. Physics of Nuclear Kinetics. Addison-Wesley Pub. Co; 1st edition, 1965
  7. Robert Reed Burn, Introduction to Nuclear Reactor Operation, 1988.
  8. U.S. Department of Energy, Nuclear Physics and Reactor Theory. DOE Fundamentals Handbook, Volume 1 and 2. January 1993.

Advanced Reactor Physics:

  1. K. O. Ott, W. A. Bezella, Introductory Nuclear Reactor Statics, American Nuclear Society, Revised edition (1989), 1989, ISBN: 0-894-48033-2.
  2. K. O. Ott, R. J. Neuhold, Introductory Nuclear Reactor Dynamics, American Nuclear Society, 1985, ISBN: 0-894-48029-4.
  3. D. L. Hetrick, Dynamics of Nuclear Reactors, American Nuclear Society, 1993, ISBN: 0-894-48453-2. 
  4. E. E. Lewis, W. F. Miller, Computational Methods of Neutron Transport, American Nuclear Society, 1993, ISBN: 0-894-48452-4.

See above:

Reactor Criticality